алгоритм обратного распространения ошибки пример
Это интересно!!!
алгоритм обратного распространения ошибки пример на c++

алгоритм обратного распространения ошибки c#

Рождение алгоритма back-propagation (обратного распространения ошибки) для широкой публики связано с работой группы PDP (Parallel Distributed Processing), освещенной в двухтомном труде 1986г.

Обучение
Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации Главная Тексты статей Добавить статьи Форум Контакты
Нейронная сеть без обратных связей - персептрон
Задачи для нейронных сетей
Большинство задач, для решения которых используются нейронные сети, могут рассматриваться как частные случаи следующих основных проблем.
· Аппроксимация - построение функции по конечному набору значений (например, прогнозирование временных рядов)
· Построение отношений на множестве объектов (например, задачи распознавания образов и звуковых сигналов).
· Распределенный поиск информации и ассоциативная память (например, задачи нахождения неявных зависимостей в больших массивах данных).
· Фильтрация (например, выявление «видимых невооруженным глазом», но сложно описываемых аналитически изменений сигналов).
· Сжатие информации (например, нейросетевые реализации алгоритмов сжатия звуков, статических и динамических изображений).
· Идентификация динамических систем и управление ими.
Многослойная нейронная сеть с несколькими выходами, изображенная на рисунке ниже представляет собой персептрон.
Схема может быть дополнена сумматором, объединяющим при необходимости выходные сигналы нейронов в один общий выход.
Количество слоев в персептроне может быть разным, в зависимости от сложности задачи. Математически доказано (теорема Колмогорова), что трех полноценных нейронных слоев достаточно, чтобы аппроксимировать любую математическую функцию (при условии возможности неограниченно наращивать количество нейронов в скрытом слое).
Персептрон функционирует в дискретном временном режиме – подали на вход статическую совокупность сигналов (входной вектор), оценили совокупное состояние выходов (выходной вектор), затем подали на вход следующий вектор и т. д. Предполагается, что сигнал в персептроне распространяется от входа к выходу мгновенно, т. е. временные задержки при передаче сигнала от нейрона к нейрону, от слоя к слою и связанные с этим динамические переходные процессы отсутствуют. Поскольку персептрон не имеет обратных связей (ни положительных, ни отрицательных), то в каждый момент времени любому входному вектору значений однозначно соответствует некий выходной вектор, который не изменится, пока неизменным остаются входы НС.

Алгоритм обратного распространения ошибки. Иван Томилин Ученик (95), на голосовании 3 года назад. Такая проблема есть код, но в нем нет обучения, его нужно добавить я не знаю как) Помогите пожалуйста кто может. #include "stdafx.h" #include

Теория персептронов является основой для многих других типов искусственных нейронных сетей, а сами персептроны являются логической исходной точкой для изучения искусственных нейронных сетей.
Обучить нейронную сеть - значит, сообщить ей, чего мы от нее добиваемся. Этот процесс очень похож на обучение ребенка алфавиту. Показав ребенку изображение буквы "А", мы спрашиваем его: "Какая это буква?" Если ответ неверен, мы сообщаем ребенку тот ответ, который мы хотели бы от него получить: "Это буква А". Ребенок запоминает этот пример вместе с верным ответом, то есть в его памяти происходят некоторые изменения в нужном направлении. Мы будем повторять процесс предъявления букв снова и снова до тех пор, когда все 33 буквы будут твердо запомнены. Такой процесс называют " обучение с учителем".
При обучении нейронной сети мы действуем совершенно аналогично. Предположим, у нас имеется таблица – база данных, содержащая примеры (кодированный набор изображений букв). Предъявляя изображение буквы "А" на вход нейронной сети, мы рассчитываем (в идеале), что уровень сигнала будет максимальным (=1) на выходе OUT1 (А – буква №1 в алфавите из 33-х букв) и минимальным (=0).
Таким образом, таблица, называемая обучающим множеством, будет иметь вид (в качестве примера заполнена только первая строка):
Буква
Вектор входа
Желаемый вектор выхода
X1
X2

X12
TARGET1
TARGET2

TARGET33
А
Б

Ю
Я
Совокупность векторов для каждого примера обучающего множества (строки таблицы) называется обучающей парой.
На практике необученная нейронная сеть будет работать не так, как мы ожидаем в идеале, то есть для всех или большинства примеров векторы ошибки будут содержать существенно отличающиеся от нуля элементы.
Алгоритм обучения нейронной сети - это набор математических действий, который позволяет по вектору ошибки вычислить такие поправки для весов нейронной сети, чтобы суммарная ошибка (для контроля процесса обучения обычно используют сумму квадратов ошибок по всем выходам) уменьшилась. Применяя эти действия снова и снова, добиваются постепенного уменьшения ошибки для каждого примера (А, Б, В и т. д.) обучающего множества.

Метод обратного распространения ошибки. Метод обратного распространения ошибки (англ. backpropagation)— метод обучения многослойного перцептрона. Впервые метод был описан в 1974 г. А.И. Галушкиным

После такой циклической многократной подстройки весов нейронная сеть даст правильные (или почти правильные) ответы на все (или почти все) примеры из базы данных, т. е. величины суммарной ошибки достигнут нуля или приемлемого малого уровня для каждой обучающей пары. В таком случае говорят, что "нейронная сеть обучена", т. е. готова к применению на новых, заранее не известных, данных.
В общем виде алгоритм обучения с учителем будет выглядеть следующим образом:
1. Инициализировать синаптические веса маленькими случайными значениями.
2. Выбрать очередную обучающую пару из обучающего множества; подать входной вектор на вход сети.
3. Вычислить выход сети.
4. Вычислить разность между выходом сети и требуемым выходом (целевым вектором обучающей пары).
5. Подкорректировать веса сети для минимизации ошибки.
6. Повторять шаги с 2 по 5 для каждой пары обучающего множества до тех пор, пока ошибка на всем множестве не достигнет приемлемого уровня.
Конкретный вид математических операций, выполняемых на этапе 5, определяет разновидность алгоритма обучения. Например, для однослойных персептронов применяют простейший алгоритм, основанный на т. н. дельта-правиле, для персептронов с любым количеством слоев широко используется процедура обратного распространения ошибки, известна группа алгоритмов с интересными свойствами, названными стохастическими алгоритмами обучения и т. д. Все известные алгоритмы обучения нейронных сетей являются по сути разновидностями градиентных методов оптимизации нелинейной функции многих переменных. Основная проблема, возникающая при их практической реализации заключается в том, что никогда нельзя знать наверняка, что найденная в результате комбинация синаптических весов является действительно самой эффективной с точки зрения минимизации суммарной ошибки на всем обучающем множестве. Эта неопределенность получила название «проблемы локальных минимумов функции цели».
Под функцией цели в данном случае понимается выбранный интегральный скалярный показатель , характеризующий качество отработки нейронной сетью всех примеров обучающего множества – например, сумма среднеквадратичных отклонений OUT от TARGET для каждой обучающей пары. Чем меньше достигнутое значение функции цели, тем выше качество работы нейронной сети на заданном обучающем множестве. В идеале (на практике достижимом лишь для самых простейших задач) удается найти такой набор синаптических весов, что .
Поверхность функцией цели сложной сети сильно изрезана и состоит из холмов, долин, складок и оврагов в пространстве высокой размерности. Обучаемая градиентным методом сеть может попасть в локальный минимум (неглубокую долину), когда рядом имеется гораздо более глубокий минимум. В точке локального минимума все направления ведут вверх, и алгоритм неспособен из него выбраться.
Таким образом, если в результате попытки обучить нейронная сеть требуемая точность так и не была достигнута, то перед исследователем возникают две альтернативы:
1. Предположить, что процесс попал в ловушку локального минимума и попытаться для той же самой конфигурации сети применить какую-либо другую разновидность алгоритма обучения.
2. Предположить, что найден глобальный минимум функции цели для данной конкретной конфигурации сети и попытаться усложнить сеть – увеличить количество нейронов, добавить один или несколько слоев, перейти от полносвязной к неполносвязной сети, учитывающей априорно известные зависимости в структуре обучающего множества и т. п.
В задачах распознавания образов и классификации широко применяются алгоритмы, названные обучением без учителя. В этом случае перед сетью ставится задача самостоятельно найти в предъявляемом наборе примеров группы входных векторов «похожие друг на друга», вырабатывая высокий уровень на одном из выходов (не определяя заранее на каком именно). Но и при такой постановке задачи проблема локальных минимумов также имеет место, хотя и в неявном виде, без строгого математического определения функции цели (т. к. само понятие функции цели подразумевает наличие заданного эталонного отклика сети, т. е. «учителя») – «а действительно ли нейронная сеть научилась выделять кластеры входных векторов наилучшим образом из всех возможных при данной конкретной ее конфигурации?».
Искусственный (математический) нейрон | Нейронные сети с обратными связями
Карта сайта Карта сайта укр
Полезное
Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных
Полезен материал? Поделись:

(14). 5. Если ошибка сети существенна, перейти на шаг 1. В противном случае – конец. Рис.1 Диаграмма сигналов в сети при обучении по алгоритму обратного распространения.


Оглавление: 1. Метод обратного распространения ошибки 2. Сигмоидальные функции активации 3. Функция оценки работы сети 4. Описание алгоритма 5. Алгоритм 6. Недостатки алгоритма.

Ниже рассматривается один из самых известных и распространенных алгоритмов обучения многослойных сетей с прямыми связями - алгоритмом обратного распространения ошибки (англ. back-propagation).


4.Критерии ошибок. 5.Алгоритм обратного распространения ошибки. 6.Возможности, проблемы. 1. Архитектура искусственных нейронных сетей.


Необходимость иерархической организации нейронной системы. Многослойный ПЕРСЕПТРОН. Алгоритм обратного распространения ошибок.

Глава 2. Алгоритм реализации нечёткого контроллера на основе сетей обратного распространения. 2.1. Нейронные сети с обратным распространением ошибки. Нейрон.


Алгоритм обратного распространения ошибки (back propagation) — это итеративный градиентный алгоритм обучения, который используется с целью минимизации среднеквадратичного отклонения текущего выхода и желаемого выхода


Метод обратного пузырька(камешка) C++ C++ Функция обратного вызова Нахождение корней уравнения методом обратного интерполирования C++ Алгоритм обратного распространения ошибки.

Давайте рассмотрим обучение по алгоритму обратного распространения ошибок. Алгоритм обратного распространения ошибок. Этот алгоритм определяет два «потока» в сети.20 декабря 2014


В 1986 году Руммельхарт Хинтон и Вильямс предложили алгоритм обратного распространения ошибки, главная идея которого состояла в том, что ошибку на последнем слое можно просто вычислить, а соответственно


Алгоритм обратного распространения ошибки применяется для многослойного перцептрона. У сети есть множество входов , множество выходов Outputs и множество внутренних узлов.

Обсудим алгоритм обратного распространения ошибки [20], который позволяет обучать многослойные нейронные сети.  В результате алгоритм обратного распространения ошибки можно записать в виде.


Рассмотрим алгоритм обратного распространения ошибки в виде блок-схемы (рисунок 4). Рисунок 4. Алгоритм обучения нейронной сети прямого распространения.


В алгоритме обратного распространения ошибки (рис. 1.2) выделяют две фазы. В течение первой фазы по заданному вектору входных сигналов рассчитывают текущее значение выходного.

Алгоритм обратного распространения предполагает расчет градиента функции ошибки "обратным распространением сигнала" ошибки. Тогда частная производная ошибки по весам связей рассчитывается по формуле


Рекомендуем

rd-ok.ru Телефон: +7 (382) 089-44-12 Адрес: Краснодарский край, Армавир, Посёлок РТС, дом 43